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Pseudospherical carbon clusters C, with n = 60 + 6 k  and k equal either to zero or to any integer greater than one 
are expected to have closed electronic shells; a simple rule predicts the symmetries of the bonding orbitals of these 
'leapfrog' clusters. 

Laser irradiation of graphite produces a range of novel carbon 
species, amongst them the now famous C60 molecule.1--3 It 
has been postulated that the longer-lived fragmentation 
products with even numbers of carbon atoms are pseudo- 
spherical clusters.3 In particular, the sixty-carbon fragment is 
thought to have a truncated icosahedral structure. 1 Calcula- 
tions from simple Hiickel4 to a6 initio SCF5 levels confirm that 
isosahedral C60 would have a closed-shell electronic configura- 
tion with substantial delocalisation energy, and would occupy 
at least a local minimum on the potential energy surface. A 
seventy-carbon species also shows special stability.2 Theor- 
etical studies of a number of hypothetic molecules suggests 
that Cm and C70 may be members of a larger series of stable 
clusters.6.7 Indeed, an infinite series of closed-shell clusters of 
icosahedral symmetry is predicted by Huckel theory.* The 
present paper widens the discussion still further. All 3-connec- 
ted carbon frameworks that satisfy certain general conditions 
are predicted here to give closed shells. To generate these 
structures we use the leapfrog principles described below. 

The various theoretical treatments make some plausible 
assumptions about the shapes of large carbon clusters. They 
are thought to be 3-connected, pseudospherical polyhedra 
with 12 pentagonal faces and all other faces hexagonal. 
Exactly 12 pentagons are necessary to give a geometrically 
closed shape. Other ring sizes are less likely because they 
reduce the delocalisation energy. At least one such n-vertex 
polyhedron exists for all even n 3 20 with the sole exception9 
of n = 22. The number of hexagonal faces is (n/2) -10, and in 

+ a - -  

a sense these polyhedra are finite analogues of the infinite 
graphite layer. When n is small the polyhedra are unique, but 
the number of distinct combinations of atoms grows rapidly 
with increasing nuclearity. For example, there is only one 
pentagon + hexagon cluster with n = 24 but over 80 for n = 
44.10911 In qualitative M.O. theory these clusters are con- 
sidered to be held together by 0 and JI bonds. Using a set of sp2 
hybrids on each atom, one two-electron bond is constructed 
for each of the (3n/2) edges of the polyhedron. A JC framework 
is built up from the remaining n radial p orbitals. A 
closed-shell cluster is thus one where precisely (n/2) of the x 
M.0.s  are bonding. 

From any pentagon + hexagon polyhedron we may 
generate another containing three times as many atoms. This 
is done by the leapfrog operations which is carried out as 
follows. First, all faces of the original polyhedron P are capped 
to produce a deltahedron D (= a polyhedron with all faces 
triangular). Then the dual is taken (the dual is a polyhedron 
where each face-centre of the original becomes a vertex, and 
each vertex is replaced by the centre of a face. Thus a cube and 
an octahedron are duals, an icosahedron and a dodecahedron 
are duals, and a tetrahedron is self-dual). The final poly- 
hedron L is termed the leapfrog of P. It is easy to show by 
Euler's rule that the final polyhedron has 3n vertices, and 12 
pentagonal and (3n/2) -10 hexagonal faces. It is also evident 
that a polyhedron and its leapfrog belong to the same point 
group (except when by accident of bondlengths the leapfrog 
has higher symmetry). Leapfrogging may be repeated so that, 
from an original n-vertex cluster, polyhedra with 3n, 9n, 27n 
etc. vertices are produced. As shown in Figure 1, to each face 
of the original polyhedron corresponds a geometrically similar 
but rotated face in the leapfrog. In addition each vertex of the 
original is replaced by a hexagon in the leapfrog. Some use has 
been made of the leapfrog operations but here we introduce 
an important new point. The abstract mathematical concept of 

Figure 1. Transformation of components of a polyhedron P under the 
leapfrog operation: (a) a hexagon in P is replaced by a hexagonal cap 
rotated through 30" (and surrounded by hexagons): (b) a pentagon in 
P gives a pentagon in L but rotated through 36"; (c) a vertex of P is 
surrounded by 3 capping atoms and gives a new hexagonal face in L; 
(d) an edge of P gives an edge rotated through 90" in L. 

Figure 2. Bonding and antibonding localised orbitals of a leapfrog 
polyhedron. The arrow represents the leapfrog operation. An edge of 
the original polyhedron corresponds to a transverse edge in the 
leapfrog for which the radial p-orbitals give one antibonding (upper) 
and one bonding (lower) combination. 
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Figure 3. The simplest example of the leapfrog operation. A dodecahedron (C2()) has 12 pentagonal faces. Each of these is capped, becoming a 
pentagonal pyramid, to give a 32-vertex 60-face deltahedron: the omnicapped dodecahedron (B3J. In the second stage of the leapfrog operation 
the dual is taken. Each triangle is replaced by a 3-co-ordinate vertex, each capping atom becomes the centre of a pentagon, and each 
6-co-ordinate vertex the centre of a hexagon. The final polyhedron is thus the truncated icosahedron (C6()). 

the leapfrog has an implication for cluster bonding: any 
leapfrog of a 3-connected pentagon + hexagon cluster 
corresponds to a closed-shell neutral carbon cluster. 

To see this, consider the effect of the leapfrog operation on 
an edge of the original polyhedron (Figure Id). Correspond- 
ing to each edge in the original is one rotated through 90" in 
the leapfrog. Of the (9n/2) edges of the leapfrog, one third are 
derived in this way from the edges of the original. Every vertex 
of the leapfrog is contained in just one such edge. Because the 
polyhedron is 3-connected an electron-precise o framework 
can be constructed from sp2 hybrids. Remembering that each 
vertex also carries a radial p orbital, we can assign one local 
x-bond and one n-antibond to each derived edge (Figure 2). 
Interaction between the local orbitals will produce delocalised 
M.0 .s  and will alter their energies but will not change the total 
number of bonding and antibonding combinations. We can 
therefore expect (3n/2) bonding and (3n/2) antibonding M.0 . s  
in the x-system. Hence the leapfrog has a closed shell with 3n 
x-electrons occupying (3n/2) orbitals. 

Since pentagon + hexagon polyhedra exist with 20, 24, 26, 
28 . . . vertices, this reasoning predicts closed shells for C, 
where n = 60,72,78,84 . . . (but not 66), i.e. for equation ( l ) ,  
where k is either zero or an integer greater than one. This is an 
analogue of the famous 4n + 2 rule of Hiickel, and it is 
equivalent to a statement that, whenever a structure L can be 
made by leapfrogging a small cluster P, the larger molecule 
has a closed shell. It has nothing to say about non-leapfrog 
structures. Vertex numbers not satisfying equation (1) may or 
may not give closed shells. For example, C70 does not satisfy 
equation (1) but is closed-shell, albeit with an empty nonbond- 
ing orbital.6 Furthermore, clusters with a vertex number 
satisfying equation (1) but which are not geometrically 
leapfrogs may or  may not be closed-shell. For example, of 
several possible shapes for C120 some have closed and some 
open shells; only when they are leapfrogs of C40 is the closed 
shell guaranteed by equation (1). The rule (1) is borne out by 
calculations on a range of carbon clusters C, with n ranging 
from 20 to several hundred. All leapfrogs tested so far have 
been found to be closed-shell. These calculations will be 
reported in detail in a later paper. 

n = 60 + 6k (1) 

One interesting feature of the leapfrog procedure is that it 
never generates adjacent pentagons. C60, the smallest leap- 
frog, is also the smallest cluster where every pentagonal face is 
surrounded by hexagons. On general chemical grounds we 
would expect that the pentagons would be well-separated in 
stable clusters, and we would also expect highly symmetrical 
structures to be particularly stable. Icosahedral clusters satisfy 
both of these expectations, as they have the highest possible 
symmetry and maximise the distance between pentagons.8 
However, they do not all have closed shells. 

C22 does not exist as a pentagon + hexagon polyhedron and 
so c66 cannot be made as a leapfrog. A rather irregular 
66-vertex cluster of 0 3  symmetry has an open shell. Its 
leapfrog, Clg8, has a closed shell. The second member of the 
series (1) is a C72 structure which is the leapfrog of the unique 
C24 polyhedron and turns out to be the same molecule as the 
'carbon pillow'.3 

A useful analogy can be drawn between the unsaturated 
carbon clusters and the saturated polyhedranes. An rn-vertex 
3-connected polyhedron can serve as the carbon framework of 
an electron-precise C,H, cluster. The three lobes of a set of 
sp2 hybrids give one local a-bond per edge and hence a 
closed-shell configuration. A one-to-one correspondence 
exists between the a-bonding orbitals of a C,H, cluster (or 
the edges of the C, polyhedron) and the n-bonding orbitals of 
the leapfrog C3,. A group theoretical version of this corre- 
spondence runs as follows. The symmetry spanned by the 
x-bonding M.0 . s  of a leapfrog cluster L is the same as the 
reducible representation of the edges of the original poly- 
hedron P, see equation (2). Thus we have not only a criterion 

r3,,2(bonding M . 0 . s  of L) = r3,,2(edges of P) (2) 

for predicting closed shells but also a prediction of the 
symmetry labels of the electronic configuration. To  take a 
simple example, C a  is the leapfrog of C20 (Figure 3) and 
therefore the bonding x M . 0 . s  of c6() should span the same 
symmetry as the 30 edges of a dodecahedron, i.e. equation (3). 

r30 = A ,  + TI, + T2, + G, + G, + 2H, + H ,  (3) 

This is correct.6 Similarly the 90 edges of c6() span the 
symmetry in equation (4), and this is the reducible representa- 

r30 + 2r6o + r120  = 4A, + A ,  + 5T1, + 8T1, + 5T2, + 8T2, 
( 5 )  + 9G, + 9Gu + 13H, + 10Hu 

tion of the 90 bonding M.0 . s  of CI8(), the leapfrog8 of c60. In 
turn the 270 edges of CI8() span equation ( 5 ) ,  and match in 
symmetry the bonding x M.0 .s  of Cs40.8 All the Tm are o 
representations, generated by permutation of a set of equiv- 
alent points (e.g. bond centres). For further explanation of the 
symbols see ref. 12. 

The new electron-counting rule subsumes an earlier one for 
Z and Zh clusters. It has been shown8 that icosahedral clusters 
with 60rn atoms have closed shells, those with 60m + 20 atoms 
have open shells. Here rn is an integer of the form (a2 + ab + 
b2). Each closed-shell I or  1, cluster is the leapfrog of an 
open-shell structure of the same symmetry but with only 20m 
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atoms. Thus all closed-shell icosahedral clusters are special 
cases of the new 60 + 6k rule with k = 10 (a2 + ab + b2 - 1 ) .  

Finally we consider some hypothetical Clzo clusters. Dualis- 
ing the various proposals of Brown and Lipscomb13 for B22 
structures (Figures Xa, Xb, and Xc of ref. 13), we may 
construct C40 frameworks of Td, &, and C2” symmetry. A 
second D 5 d  structure can be made from two half-dodecahedra 
joined by two belts of hexagons. All give either open shells or 
closed shells with empty bonding M.0 .s .  On leapfrogging we 
obtain four properly closed-shell Clzo structures with delocal- 
isation energies of 0.56332, 0.56336, 0.56331, and 0.56338 
p/atom, respectively. (The second D5d value was given 
incorrectly in ref. 8 where the structure illustrated is actually 
DSh and open-shell.) Although the assumption of a single fi 
value introduces some uncertainty into the comparison, it is 
clear that all four are plausible structures for CI2*, substan- 
tially more stable than the ‘Archimedene’ (non-leapfrog) 
proposal14 with its delocalisation energy of 0.48810 @/atom. A 
forthcoming paper will present possible structures for a large 
number of carbon clusters. 
Received, 19th May 1987; Corn. 677 
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